SYNTHESIS OF ANION-RADICAL SALTS BY HYDRIDE TRANSFER REACTIONS

Gunzi Saito¹ and Allan K. Colter*

Guelph-Waterloo Centre for Graduate Work in Chemistry University of Guelph, Guelph, Ontario, Canada N1G 2W1

(Received in USA 20 June 1977; received in UK for publication 5 August 1977)

Crystalline anion-radical salts of heterocyclic cations are of interest as organic

conductors.² While both simple and complex anion-radical salts derived from 7,7,8,8-tetracyanoquinodimethane (TCNQ) have been extensively studied,^{2,3} salts derived from other π acceptors have received much less attention.

In the course of an investigation of the mechanisms of hydride transfer reactions between dihydropyridine analogs and π acceptors⁴ we observed that reaction of acridan (<u>1a</u>), N-methylacridan (1b), and N-propyl-1,4-dihydronicotinamide (2) with strong π acceptors, A, led

to anion-radical salts (eg., 2^+A^-) of the corresponding acridinium (3) and pyridinium (4) cations. We describe here the application of this method to the preparation of several known and new crystalline anion-radical salts derived from TCNQ, 2,3-dicyano-5,6-dichloro-1,4-benzoquinone (DDQ), 2,3-dicyano-1,4-naphthoquinone (DCNQ), 2,3-dicyano-5-nitro-1,4-naphthoquinone (DCNNQ), 9-dicyanomethylene-2,4,7-trinitrofluorenone (DTNF), and 9-dicyanomethylene-2,4,5,7-tetranitrofluorenone (DTENF).

The reactions were carried out in anhydrous benzene, ether, or acetonitrile, the salt crystallizing from the reaction mixture. In a typical preparation 0.0505 g (2.47 x 10^{-4} mol) of DDQ in 20 ml of ether was added to 0.0195 g (1.00 x 10^{-4} mol) of <u>2b</u> in 2 ml of ether. A black solid separated which was washed with acetonitrile and then ether to yield 0.0418 g (99%) of 3^{+} DDQ⁻.

Analytical data for this and several other salts prepared in a similar manner are presented in the Table, with the solvents and molar ratios of reactants used in their preparation. The examples listed include both simple (1:1) and complex (1:2 and 2:3) salts. The influence of reaction conditions on the compositions of the salts was not investigated in detail. We note, however, that reaction of <u>1a</u> with molar ratios of TCNQ ranging from 1.0 to 2.5 in acetonitrile yielded only the complex salt $3a^{+}(TCNQ)^{-}_{2}$, and reaction of <u>1b</u> with molar ratios of DDQ ranging from 1.0 to 2.2 in ether led only to the simple salt $3b^{+}DDQ^{-}$. Further, reaction of <u>1b</u> with DCNQ in benzene led to the simple salt while the same reaction in ether led to the complex salt $3b^{+}(DCNQ)^{-}_{2}$. Only the 1:2 salt or salts of indefinite composition could be obtained by the conventional method³ from Li⁺DCNQ⁻ or Na⁺DCNQ⁻ and $3b^{+}I^{-}$ in acetone.

The products were characterized by elemental analysis, and by comparison of their infrared and uv-visible spectra with those of the halide salts of $\underline{3a}^+$, $\underline{3b}^+$ and $\underline{4}^+$, and the alkali metal anion-radical salts of the six acceptors prepared by the method of Torrey and Hunter.⁵ Spectra of TCNQ⁷,³ DDQ⁷,⁶ and DCNQ⁷ salts agreed well with published spectra; spectra of DTNF⁷,⁸ and DTENF⁷,^{8b} salts were consistent with published spectral data. The previously-unreported K⁺DCNNQ⁷ showed major absorption maxima at 580, 547, <u>ca</u> 460, 434, 412 and 390 nm in the uvvisible, and a characteristic intense absorption (CEN stretch) at 2200 cm⁻¹. The CEN stretching absorption in DCNNQ⁹ appears at 2210 cm⁻¹ and is much weaker. Of the salts listed in the Table, $\underline{3a}^+$ (TCNQ)⁷₂, ¹⁰ $\underline{3b}^+$ (TCNQ)⁷₂, ^{3b} and $\underline{3a}^+$ DTENF⁷ ^{8b} have been reported previously; the others are, to our knowledge, new.

The stoichiometry of the reaction for formation of simple anion-radical salts is as represented by eq. 1, where DH is the hydride donor and A the acceptor.⁴ Evidence presented

$$3A + 2DH \longrightarrow 2D^{\dagger} + 2A^{\dagger} + AH_{2} \qquad (1)$$

elsewhere⁴ indicates that the reaction proceeds by a slow hydride transfer (eq. 2) followed by rapid reaction of the AH⁻ with unreacted acceptor (eq. 3). Reaction 3 is well known for

$$DH + A \longrightarrow D^{+} + AH^{-}$$
(2)
$$AH^{-} + 0.5A \longrightarrow 0.5AH_{2} + A^{-}$$
(3)

benzoquinone acceptors,¹¹

The requirements for isolation of anion-radical salts in high yield and purity by this method have not been investigated in detail. The product obtained must depend, among other things, on the concentration of anion-radical in solution. Reaction of <u>1b</u> with chloranil or 2,3-dichloro-5-nitro-1,4-naphthoquinone under conditions similar to those described above led to mixtures containing the hydroquinone monoanion. Under strongly acidic conditions the anion-radical concentration will be negligible.^{3a}, ^{11c} Reid <u>et al</u>¹² have reported that reaction of <u>1a</u> with DDQ in acetic acid leads to the hydroquinone monoanion salt <u>3a</u>⁺DDQH⁻.

The method described in the present work is similar to that described by Melby <u>et al</u>^{3a} for preparation of salts of the type $R_3NH^+(TCNQ)_2^{\overline{}}$ by reaction of trialkylamines with TCNQ. In

			lable. Pre	paration	H and	ropertie	s of Anion-Radical Salts		
+ L av			Analyses	к,			Solvent	Molar Ratio	Color
	Ü	alculat	eď		Found			to Donor	
	U	Н	N	υ	н	N			
$\frac{3a}{3a}^{+}(\operatorname{TCNQ})\frac{7}{2}$	75.5	3.1	21.4	75.4	3.4	21.5	acetonitrile	1.0 - 2.5	green-black
$\frac{3b^{+}}{2}$ (TCNQ) $\frac{1}{2}$	7.57	3.4	20.9	76.0	3.7	21.2	acetonitrile or ether	1.0	green-black
++_t_cnq.	68.3	9.4	22.8	68.4	9.4	23.3	acetonitrile-ether	đ	dark blue
<u>за</u> †றдо.	61.9	2.5	10.3	62.0	2.9	10.4	acetonitrile or ether	1.0	Breen
<u>35</u> +DDQ.	62.7	2.9	10.0	61.8	3.3	10.0	acetonitrile or ether	1.0 - 2.2	dark green
$(\underline{3a}^{\dagger})_{2}(\text{dcnq})_{3}^{2}$	75.6	3.3	11.4	75.8	3.7	11.3	acetonitrile	1.5	green-black
30 ⁺ DCNQ ⁻	27.6	0.4	10.4	77.3	4.3	10.5	benzene	1.5	green
$3b^{\dagger}(DCNQ)\overline{5}$	74.8	3.3	11.5	74.2	4.2	10.9	ether	1.0	greenish brown-black
$(\underline{3a}^+)_2(\text{dgnnq})_3^{\overline{2}}$	66.5	2.6	13.8	67.0	3.1	13.2	benzene	1.5	black
3 ^{b⁺ dcnnq⁻}	69.8	3.4	12.5	69.7	0.4	12.4	ether	1.0	black
$3\overline{a}^{+}(\text{DTNF})^{-}_{2}$	59.6	2.2	17.0	59.4	2.6	16.6	acetonitrile	1.0	black
3a ⁺ DTENF-	59.2	2.4	16.7	58.9	3.0	17.3	acetonitrile	1.3	black

7327

1

2 ŝ

í

ેદ •o¥

anot measured

these reactions a portion of the amine is apparently consumed by a hydride transfer reaction but attempts to identify the presumed oxidation product were not successful. Wallenfels <u>et al</u>¹³ have reported that reaction of dihydropyridines with tetracyanoethylene (TCNE) leads to TCNE⁷ in solution, but the salt isolated contained the pentacyanopropenyl anion.

A more extensive investigation of the scope of the method, including the influence of reaction conditions on the product composition is in progress.

<u>Acknowledgement</u>. We wish to thank the National Research Council of Canada for financial support.

REFERENCES AND NOTES

- 1. Present address: Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, U.S.A.
- (a) A. F. Garito and A. J. Heeger, Acc. Chem. Res., 7, 232 (1974); (b) E. M. Engler, Chem. Tech., 6, 274 (1976); (c) R. C. Wheland and J. L. Gillson, J. Am. Chem. Soc., <u>98</u>, 3916 (1976).
- (a) L. R. Melby, R. J. Harder, W. R. Hertler, W. Mahler, R. E. Benson, and W. E. Mochel, J. Am. Chem. Soc., <u>84</u>, 3374 (1962); (b) L. R. Melby, Can. J. Chem., 43, 1448 (1965).
- 4. (a) A. K. Colter, G. Saito, F. J. Sharom, and A. P. Hong, J. Am. Chem. Soc., <u>98</u>, 7833 (1976); (b) A. K. Colter, G. Saito, and F. J. Sharom, Can. J. Chem., <u>in press</u>.
- 5. H. A. Torrey and W. H. Hunter, J. Am. Chem. Soc., <u>34</u>, 702 (1912).
- 6. Y. Iida, Bull. Chem. Soc. Jap., <u>44</u>, 1777 (1971).
- 7. Y. Iida, Bull. Chem. Soc. Jap., 45, 624 (1972).
- 8. (a) T. K. Mukherjee and L. A. levasseur, J. Org. Chem., <u>30</u>, 644 (1965); (b) P. Dupuis and J. Néel, C. R. Acad. Sci., Paris, Ser. C, <u>268</u>, 557 (1969).
- 9. K. Wallenfels, G. Bachmann, D. Hofmann, and R. Kern, Tetrahedron, 21, 2239 (1965).
- 10. P. Dupuis and J. Néel, C. R. Acad. Sci., Paris, Ser. C, 265, 688 (1967).
- (a) J. H. Baxendale and H. R. Hardy, Trans. Faraday Soc., <u>49</u>, 1433 (1953);
 (b) H. von Diebler, M. Eigen, and P. Matthies, Z. Naturforsch., <u>16b</u>, 629 (1961);
 (c) S. Carter, J. N. Murrell, E. J. Rosch, N. Trinajstić, and P. A. H. Wyatt, J. Chem. Soc.
 (B), 447 (1967).
- 12. D. H. Reid, M. Fraser, B. B. Molloy, H. A. S. Payne, and R. G. Sutherland, Tetrahedron Letters, 530 (1961).
- 13. K. Wallenfels, G. Bachmann, H. Diekmann, K. Friedrich, D. Hofmann, and R. Kern, Angew. Chem., Int. Ed. Engl., <u>2</u>, 241 (1964).